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Abstract

The following presentation outlines the lectures for the senior course Introduction to Compiler Con-
struction given in the Fall of 2009, at the Department of Computer Science at Ben Gurion University.
Compiling these notes takes up a great deal of my time, and though I try to keep them in sych with the
lectures, this is a failing proposition as they are always behind. Still, they will be updated frequently
throughout the semester, and should help you study the material at home. They are not a substitute
for attendence, and I make no claims that they cover everything that was discussed in class or all the
material for the final exam. If you notice any errors or omissions, please let me know and I will update
the document.

This document pre-supposes that you are familiar with the programming language ML
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1 Introduction to Compiler Construction (§1–41)

1. The basic tools of the software engineer are the interpreter and the compiler.

2. The interpreter computes the value of expressions or performs commands.

3. The compiler translates expressions and commands from one language to another.

4. Expressions have values. Statements and commands perform actions that effect the environment.

5. In this sense, an environment is anything that is observable: It includes global variables, IO devices,
etc. This is a very broad notion of an environment, and contrasts with what you’ve studied in PPL,
where the environment was a particular data structure that associates variables and values. In order
not to confuse these two notions, we will use the term observable environment to refer to anything the
program might effect.

6. Effecting the environment is what is known as a side effect. Side effects include changing the value at
a location, printing output to the screen, reading data from a file or network connection, deleting files,
creating tables in a database, etc.

7. When side effects are a part of a language, the language is said to be imperative. When side effects are
not a part of the language, the language is said to be functional. Languages that discourage the use of
side effects are called quasi-functional or semi-functional programming languages.

8. Scheme and ML are examples of quasi-functional programming languages. Good programming in these
languages restricts the use of side effects and avoids it when possible. Programs in these languages
consist mainly of expressions, and executing these programs amounts to evaluating these expressions.

9. Pascal, C, Java are examples of imperative programming languages. Good programmers in these
languages do not avoid the use of side effects, however the quality of their design is related to how well
they manage to decouple and encapsulate side effects.

10. Let Prog
Langj

be a program in some language j (e.g., Pascal or C), IntLangj
be an interpreter from the

language j to the space of values, CompLangk

Langj
be the compiler that translates programs from language

j to language k, then a diagram that relates the interpreter and the compiler in functional languages
is as follows:

Prog
Lang1

CompLang2
Lang1 //

Int
Lang1
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Prog

Lang2

CompLang3
Lang2 //

Int
Lang2
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Prog
Lang3

CompLang4
Lang3 //

Int
Lang3
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· · ·

Value

Another way of stating this diagram would be to say that for any languages j, k the following holds
true:

IntLangj
[[Prog

Langj
]] = IntLangk

[[CompLangk

Langj
[[Prog

Langj
]]]]

11. The diagram in § 10 depicts many things:

(a) The value of a program is invariant of the language in which it is implemented, or into which it
is translated.

• Likewise, we say that compilation does not change the value (or behaviour) of the program,
just the language in which it is written.

(b) This invariance is what is meant by saying that the compiler is correct.
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(c) Interpreters are logically required for computation; The compiler is optional: An interpreter is
the only way in the diagram to go from source program to its value.

(d) A translated program can be translated again, into another language, and can be translated yet
further, through more than two languages...

12. The microprocessor is an implementation, in hardware (or microcode), of an interpreter for the pro-
grams written in the language defined by the microarchitecture. Running a native-code executable
means running a program written in some microarchitecture on a hardware implementation of an
interpreter for this microarchitecture.

13. If we want to create a similar diagram for imperative languages, we need to change the domain and range
of the interpreter for the imperative programming language, to include the observable environment, in
the sense of § 5, and return a new observable environment (that will contain the effects of any changes
resulted by the execution of the program).

14. Example: Suppose we wish to model side effects to variables, a character input stream,
and a character output stream. The observable environment will be an ordered triple
〈env , InputStream,OutputStream〉. The interpreter would be a function mapping statements1 and
such an ordered triple into a new ordered triple:

Int
Imp

[[Prog
Imp

, 〈env , InputStream,OutputStream〉]] =
〈
env ′, InputStream ′,OutputStream ′〉

Presumably, after Int
Imp

has executed Prog
Imp

, the values of some variables are now different, some
input has been read, and some output has been printed, so

〈
env ′, InputStream ′,OutputStream ′〉 will

be different from 〈env , InputStream,OutputStream〉, and this is precisely what we mean by a side-effect.

The equation that models the relationship between a compiler from LangImpj
to LangImpk

, and the
two respective interpreters for these languages Int

Impj
, Int

Impk
, would be given by:

Int
Impj

[[Prog
Impj

, 〈env , InputStream,OutputStream〉]] =

Int
Impk

[[CompImpk

Impj
[[Prog

Impj
]]︸ ︷︷ ︸

∈ LangImpk

, 〈env , InputStream,OutputStream〉]]

and the diagram would be constructed accordingly.

15. Each additional side effect we might wish to observe will require us to modify the observable environ-
ment accordingly. For example, if our imperative language includes pointers to RAM, and arrays of
locations in RAM, then our observable environment will have to model such RAM. To do so, we can
replace our ordered triple with an ordered quadruple (4-tuple) that includes a vector of numbers or
characters. The equation defining the interpreter will have to change accordingly, to reflect the fact
that our programming language can modify locations in memory, and consequently our diagram will
have to change as well.

One moral of this example is that functional languages are simpler to model.

16. Exercise: Can you find an example where it might be useful to chain compilers, i.e., to translate the
translation of a computer program?

17. The diagram says nothing about the source and target languages of the compiler, and indeed, the
target language need not be assembly language or machine code. Indeed, all combinations are logically
possible: it is possible to translate between two high-level languages, between a high-level and low-level
language, between a low-level and a high-level language, or between two low-level languages.

18. Exercise: Can you find an example where it might be useful to translate between two low-level
languages?

1Remember: Expressions have values, whereas statements effect an environment.

3



19. A common misconception is to think that compilation is about generating executables. In fact, gen-
erating an executable is a matter of packaging and not of compilation. Even interpreted code can be
packaged into an executable: Just create an executable from the interpreter and its hard-coded input.
To drive the point even further, consider that many zip archiving programs will let you turn a zip
archive into a standalone executable that when executed will unpack into directories and files. This
has nothing to do with translation, and is done by packaging the unzip program with the zip archive,
as hard-coded data written directly into the executable file. On the other hand, it is possible to compile
to languages other than to machine code, and the compile can generate text files, or various “fast load”
files with some internal format of their own.

20. Most of the time, compilation is like explaining something in simpler terms: Complex, rich, expressive
forms are translated into simpler forms, and in many cases, the language of these simpler forms is
either assembly or machine language. This is why most people think of compilers as having something
to do with executables.

21. It is possible, however, to tranlsate programs from low-level languages to higher level languages. This
kind of compilation is called decompilation. Decompilation is a form of compilation that employs
special analyses that attempt to reconstruct high-level forms out of low-level forms.

22. Exercise: Can you think of circumstances under which decompilation might prove useful?

23. When the target of the compiler is a microarchitecture that is implemented in hardware, the compiler
is said to be a native-code compiler.

24. When the target of the compiler is a microarchitecture that has no hardware implementation, the
compiler is said to be a byte-code compiler, to compile to byte code, or to a virtual machine.

25. Exercise: What might be the advantages and disadvantages of native-code compilers over byte-code
compilers?

26. Another misconception about compilers is that compilers are batch-oriented, while interpreters are
interactive. Batch-oriented means that the process of evaluating or executing the code is done at
a separate time, from the perspective of the user, than the process of creating the code. Interactive
means that the user interacts with the underlying system, issuing commands to be executed or entering
expressions to be evaluated, and that the system responds immediately.

The association of compilation with batch processing is a misconception grounded in historical prac-
tices. It is true that the earliest compilers were batch-processed, but this is true for most of the earlier
computing of the 1950’s and 1960’s. It is also true that some of the first interpreted languages were
interactive — BASIC and APL come to mind here.

What is an interactive compiler like? Typically, interactive compilers generate code directly to memory
(RAM), and execute that code on the fly. There are implementations of Scheme, LISP, Perl 6, and
other languages that offer on-the-fly, in-memory, interactive compilers.

What is a batch interpreter like? Typically, batch interpreters are used for scripting: REXX, Perl 5,
TCL, and other scripting languages are typically interpreted.

27. While interpreters are a logical necessity, we may wonder why use compilers? One reason is convenience.
It is easier, quicker and less prone to bugs to program in a higher-level language. But is convenience
all there is to compilation? The next items should give us the vocabulary to express the significance
of compilers in a more precise way.

28. Early binding, late binding. Early binding means evaluating expressions and binding their values to
identifiers as early as possible. Late binding means evaluating expressions and binding their values to
identifiers as late as possible.

29. Efficient computation implies computing things as early as logically possible. Flexible computation
implies computing things as late as logically possible. Programming in languages that encourage early
binding (FORTH, assembly, etc) encourages efficiency at the expense of generality, abstraction, and
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coupling, while slowing down the programmer. Programming in languages that encourage late binding
(Smalltalk, Self, Ruby, etc) encourages the use of programming abstraction (including design patterns),
code re-use, modularity, and decoupling, while allowing programmers to be very productive. The ideal
programming language would allow the programmer to enjoy all the benefits of late binding, while
still giving the compiler enough information to generate code that binds early, i.e., enable aggressive
compiler optimizations.

30. A compiler optimization is a code transformation, a way of changing the code, so that it can be evalu-
ated (executed?) more efficiently. The gains in efficiency come when the compiler finds opportunities
to pre-compute an expression, i.e., when the compiler can introduce early binding into the code.

31. The highest-level optimizations are source-to-source transformations. Intermediate-level optimizations
are code transformations that take place between intermediate languages. The lowest-level transfor-
mations take place at the level of assembly instructions.

32. In translating code from a source language, though progressively lower-level intermediate languages, the
compiler can identify more situations in which earlier-binding, or pre-computing can be introduced. In
doing so, the compiler reduces the generality, modularity, level of abstraction, and level of decoupling in
the code, and generates efficient assembly language. The programmer can then modify their high-level,
abstract, modular, decoupled source code, and the compiler will re-translate it afresh.

33. Getting back to our original question: Why is the compiler necessary? The answer is that the compiler is
as necessary as its ability to produce efficient target code. The compiler is what affords the programmer
the luxury of programming in a high-level, paradigm-rich programming language, that

• lets the programmer churn out more lines of more significant code

• makes programming clearer, less prone to errors, easier to understand, modify, restructure and
re-use

• allows the programmer to ignore, at least to some extent, the efficiency issues of the code the
programmer is writing

34. The search for candidates for optimizations is pursued in the most opportunistic way. Compiler writers
program the compiler to recognize numerous situations where optimizations are possible, and the com-
piler simply checks for these situations one-by-one, with the aim of performing as many optimizations
as it can. It is in the area of optimizations (and the analysis on which they are based) that compilers
distinguish themselves. In fact, as we shall see later on in the course, it is quite trivial to write a näıve
compiler, that performs just a few optimizations. But once the basic compiler is up and running, the
real challenge becomes to add more and more optimizations. With the right implementation language
and compiler-writing tools, it can take several days to write a usable compiler for a not-too-large
programming language; But it takes many man-years to create a mature, optimizing compiler.

35. The above discussion addressed compilation in the abstract. In practice, the architecture that has
emerged over the years is that of a pipeline of algorithms the output of one serving as input to the
next. The choice of algorithms, and of the stages of the pipeline, are defined by the computational
complexity of the algorithms that are needed. For the rest of this course, we will assume, and constantly
refer back to the pipeline of the compiler given in Figure 1.

36. We identify three main stages in the pipeline of the compiler: The syntactic analysis, the semantic
analysis, and code generation. The compiler composes these states into a single software entity that
reads in characters and outputs code in the target language, usually assembly language or machine
code.

37. To conceptualize the operation of the compiler we can think of how a computer program might try to
translate text written in some natural language, e.g., English, to another natural language.

38. The translator would read in characters from some input stream. This could be a text file, or a console,
or a text area, etc. As the characters are read, the program would try to group characters into lexically
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Figure 1: The Structure of the Compiler

significant units such as words, numbers, punctuation marks, etc. Such units are known as tokens.
The phase that reads in characters and outputs tokens is called lexical analysis, and the software
unit that would perform this analysis is called a scanner. The output of the scanner is a stream of
lexically

39. The next phase in the translator would try to impose a grammatical structure upon the text: To
divide the text into sentences (and paragraphs, and chapters, etc). This phase is called parsing, and
the software unit that would perform this analysis is called a parser. The parser reads in a stream
of tokens and outputs a stream of abstract structures that represent grammatical sentences. Such
structures are known as parse trees, or abstract syntax trees.

40. Keep in mind that grammatically-correct sentences may be utterly meaningless. The American Linguist
Noam Chomsky demonstrates this in his book Syntactic Structures (1957), using the now-famous,
quaint construction colourless, green ideas sleep furiously.

The task of ascertaining the meaning of grammatically-correct sentences is known as semantic anal-
ysis, and the corresponding tool is known as a semantic analyser. The results of the semantic
analysis typically annotate the abstract syntax tree, and perhaps update some global tables as well.
The semantic analyser can be said to map ASTs to annotated ASTs.

41. The output of the semantic analyser should be detailed enough to allow for immediate translation into
the target language. In a compiler, this last phase is known as the back end.

2 Introduction to Scanning (§42–46)

42. The scanner is a function that maps a stream of characters to a stream of tokens. Tokens, as was
stated earlier, in the context of natural languages, are the smallest, lexically-significant units in the
language. Those would include names (of functions, variables, classes, etc), numbers (integers, floating
point, etc), characters, punctuation marks, etc.

The driving idea here is that identifying tokens should be easy. Just how easy? It should be possible
to describe tokens using regular expressions. This is a normative idea, which means that it is meant
to affect the way people define tokens. There is no “rule” to the effect that tokens must be describable
using regular expressions, but there is something better: Readily-available scanner-generators will
take descriptions of tokens, the regular expressions that define them, and the actions that should be
performed upon reaching such a token, and generate a scanner automatically.

43. Example: What would it be like to have tokens that are not describable by regular expressions?
Imagine a programming language in which legal variable names had to be of the form anbn · · ·. In such
a [silly] language, aa, abc, aabbcc would be legal variables, whereas abba, acc, etc would not.

44. In most programming languages, the following would be tokens: parenthesis/brackets/braces, numbers,
characters, strings, booleans.
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45. Example: An exception to § 44 are programming languages that allow for nested strings. The best-
known example of such a language would probably be the Unix Desk Calculator (dc), though there
are others.

46. Example: A feature less-baroque than nested strings would be nested comments. There are two kinds
of comments: Froms some comment marker to the end of the line, and comments that have open-
comment and close-comment markers. The first kind do not nest (obviously!), and the second kind
may or may not nest, depending on the language definition. For languages with matching comment
delimiters, a robust compiler would always support nested comments, at least with a compiler switch,
because people use comments to “comment out code”. Nested comments are not describable using
regular expressions alone, and the natural way to support such comments is to use a counter to count
the level of nesting. A DFA with such a counter would be equivalent to a stack automaton.

3 Introduction to Parsing (§47–47)

47.

4 The Language of S-Expressions (§48–48)

48.

5 The Reader (§49–49)

49.

6 The Tag Parser (§50–50)

50.

7 Macro Expansion (§51–79)

51. Programming languages contain many different syntactic constructs: Functions, applications, loops
of various kinds, conditionals, etc. These forms are a part of the language supported by language
processor (interpreter or compiler), and support for these forms means that they are recognised, and
either interpreted or translated correctly. Different forms, however, are supported at different levels,
and while this is an implementation issue, we will see later on that the way constructs are handled
does effect the way the experience of the user.

52. Some language constructs are said to be core forms. This means that the language processor works with
these forms from the very first stage, the scanner, and up to the very last stage, the code generator.
Other forms are supported only syntactically, i.e., by the scanner, reader and parser. They are later
translated into expressions involving core forms. Forms that are supported only syntactically are said
to be syntactic sugar, and are considered as mere abbreviations expressions involving the core forms.

53. One example of syntactic sugar is how C handles strings and arrays. The subscript notation ([ ... ])
is only syntactic sugar for the corresponding [pointer-]arithmetic expression. For example, "hello"[1]
is the same as 1["hello"], which in turn is the same as *("hello" + 1), which is the character ’e’.

54. Exercise: Write a brief C program to verify that "hello"[1], 1["hello"], and *("hello" + 1) all
evaluate to ’e’.

55. Writers of language processors prefer to write language processors that support a small number of core
forms, so that the language processor would be easier to write, maintain, validate, etc.
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56. The disadvantages of supporting a small number of core forms, while expanding all the rest, are
important:

• While easier to compile and interpret, it is considerably more difficult to identify opportunities
for opimization. The smaller the set of core forms, the more the intention of the programmer is
lost in translation. While the semantics of the program remains the same, efficient translation
will be harder.

• The error messages the user receives for his/her code refer to the expanded forms, and not to the
forms used by the user.

• The debugger will only show the user the expanded form; Not what he/she wrote. So debugging
is harder.

57. There is a natural tension between the drive “to focus on the essentials”, and support only the smallest
core forms, and the desire to create an efficient, user-friendly language processor.

58. Exercise: Write C macros that will be equivalent to the built in for, while, do-while forms in C,
but that will expand into labels, goto-statements, and conditionals. This will show that the looping
constructs in C need not be core forms.

59. Exercise: Concerning strings and vectors in C and Java, what information is available to either
compilers? In what ways can the respective compilers use this information?

60. In the remainder of this section, we will examine various special forms in Scheme and study how to
expand these into the core forms. We will also need to justify our choice of core forms, both on practical
and theoretical grounds.

61. When we consider the Scheme language abstractly, we speak of the following syntactic forms: Con-
stants, variables, conditionals, sequences, various forms of abstraction (lambda), application, assign-
ment, definitions, conjunctions, disjunctions, and various forms for defining local state. This list covers
a fairly large number of constructs. We will ignore all others. Anything that can be programmed at all
can be programmed elegantly and efficiently with the above constructs. Later, if you take to Scheme
and want to hone your skills as a Scheme programmer, you may study additional constructs on your
own. Let us now examine each of these constructs, one-by-one, to make sure we understand what they
stand for.

62. Constants. These include all forms of Scheme data, including numbers of various kinds (small int,
bignum, fractions, floating point, complex, Gaussian complex), Booleans (#f, #t), characters, strings,
pairs, the empty list, vectors, the void object, closures, continuations, IO ports, etc.

63. Noteworthy is the void object, not because of its great importance, but rather because one would
not normally notice it passing by... To understand the void object, and the motivation for having it
around, we must first discuss the modus operandi of Scheme.

64. Interacting with the Scheme system involves what is known as the Read-Eval-Print-Loop (REPL).
Scheme is an interactive quasi-functional language, and this means that the user types expressions at
the prompt, the expressions are then read in, evaluated, the value is printed, and the system loops
back to the beginning, i.e., displays the promt, etc.

65. Being a quasi-functional language, Scheme supports expressions that have side effects. In traditional
imperative languages such as C or Pascal, such imperative forms would be statements, i.e., syntactic
constructs that denote commands or actions to be performed, and that do not have any meaningful
return values. The syntax of Scheme does not include statements, but only expressions, i.e., syntactic
constructs that do have values. Vulgarly put, every expression in Scheme has a value, even if because
of its imperative nature, this value might not be of interest or use. This is where the void object comes
in: The void object is used to denote the value of something which should not really have had a value.
It is used to denote an unimportant value, a value that should not be printed.

8



When the value of an expression that has been typed at the prompt is the void object, the value is
not printed. Instead, the Scheme prompt appears immediately following the given expression.

For example, defining expressions in Scheme should not print anything for a value. Since expressions
must have a value, the value of a define expression is the void object, which is not printed. Consider
the following interaction with Scheme:

> (define x 3)
> x
3
>

No value is printed for the expression that defines x. This is so because the value of the defining
expression is the void object, and the REPL is written specifically not to print the void object. The
value of the expression right under it is printed.

66. Another expression that returns the void object is the if-then-expression in Scheme, when the test-
expression evaluates to #f. To understand this, consider the value of the if-then-else-expression
in Scheme: (if 〈test〉 〈thenExpr〉 〈elseExpr〉 ). The value of this expression is either the value of
〈thenExpr〉 or the value of 〈elseExpr〉, depending on the value of 〈test〉. Now consider the if-then-
expression, the structure of which is (if 〈test〉 〈thenExpr〉). What should be the value of this expres-
sion in case the value of 〈test〉 is #f? It turns out that the value is the void object. In fact, the expression
(if 〈test〉 〈thenExpr〉) can be thought of as syntacic sugar for (if 〈test〉 〈thenExpr〉 〈void object〉 ).
So here we have our first example of syntactic sugar in Scheme!

67. The void object cannot be entered at the prompt, although we can write expressions the value of which
is the void object. Some Scheme systems (e.g., Chez Scheme) support the void procedure, which takes
no arguments and returns the void object. We can easily define the void procedure in other Scheme
systems, as follows:

(define void
(let ((v (if #f #f)))
(lambda () v)))

68. If the void object is a part of some larger value, then it is printed. The specific printed representation
is implementation-dependent, but a reasonable choice is #<void>. Consider the following Scheme code:

> (let ((v (if #f #f)))
(list v v v))

(#<void> #<void> #<void>)

69. There are other expressions that return the void object in Scheme. Whenever you type an expression
at the prompt, and immediately get a new prompt, without some printed return value in between, you
know that the expression evaluated to the void object.

70. LISP, the linguistic ancestor of Scheme, does not have a void object. Instead, some semi-useful value
is returned. The sarcastic tone in “semi-useful” is due to the awkwardness of using the return value in
such situations. Here is a brief example: Assignment in Scheme reutrns the void object. Assignment
in LISP returns the value assigned. The only reasonable use of this is to “see” the value assigned,
when the assignment expression is at the prompt. However it would be awkward to use an assignment
expression as part of a larger expression. This would make for highly idiomatic, otherwise unreadable
code.

71. Variables.

72. Conditionals.

73. Sequences.
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74. Abstractions.

75. Application.

76. Assignment.

77. Definitions.

78. Conjunctions & disjunctions.

79. Forms for defining local state.

8 Semantic Analysis (§80–87)

80. The semantic analysis phase attempts to understand various facets of the semantics of the program.
This understanding is important for:

• Finding program errors
• Finding potential run-time problems
• Optimizing the code
• Generating code in the target language

81. The input to the SA phase is a stream of ASTs. The output of the SA phase is a stream of ASTs.

82. The knowledge gained during the SA phase is kept as decorations on the nodes of the ASTs, as well
as in global data structures, such as symbol tables.

83. By the SA phase, the syntax is already completely verified, and is correct. Nor further syntactic isssues
remain in the code.

84. Some of the questions that are addressed during the SA phase:

• Whether all names of variable, function, method, datatype, record, class, etc, used in the code
have been defined, and have the correct type/structure

• Are all variables, functions, structures, modules, functors, etc, correctly typed
• Are all expressions correctly typed
• Are there memory leaks in the code
• Are there array/string references that are outside the array/string
• Does the code go into infinite loops
• Does the code contain dubious constructions
• Are there unreachable areas in the code (aka dead code)
• What expressions are free of side effects
• What expressions are repeated throughout the code (and can therefore be factored out)
• ...

We are barely scratching the surface with the above questions. Any serious compiler would be asking
many more questions, and in fact, the semantic analysis phase is the most complex phase in the
compiler. We just want to get a feel for what are semantic questions, and how can this information be
used.

85. The above questions, as well as many other questions that would be asked during the SA phase of the
compiler are language-dependent. Some programming languages give the compiler so little informa-
tion, that many of these questions cannot be answered for programs in these languages. Specifically,
languages that encourage early binding give more infromation than languages that encourage late
binding. Programs in statically-typed programming languages give the compiler more information
than programs in dynamically-typed programming languages.
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86. Example: Consider the following equivalent expressions, (+ 2 3 4) in Scheme, and 2+3+4 in C.

• The type correctness of the expression in Scheme will only be verified at run-time. The type
correctness of the expression in C, however, will be known at compile-time.

• The value of the Scheme expression cannot be known in compile time, since the value of + will
only be known at run-time, and only then will we “know” that the code actually adds numbers.
The value of the global + can be redefined any time prior to the evaluation of (+ 2 3 4). On the
other hand, the value of 2+3+4 in C is computed during compile-time, since the value of + cannot
be overloaded or redefined.

87.

9 Nested Definitions (§88–88)

88.

10 Boxing Variables (§89–89)

89.

11 Lexical Environment (§90–92)

90. The lexical environment is a data structure that resides in the heap, is a part of a closure, and that
stores the values of idendifiers that can be accessed from within the body of the closure.

91. Lexical scope is implemented via algorithms for accessing and extending the lexical environment. The
static nature of lexical scope allow for very efficient access to the lexical environment.

92. The same lexical environment can be shared by more than a single closure. For example, the procedures
foo, goo, and boo defined like thus

(let ((a 3) (b 5))
(let ((foo (lambda () ... ))

(goo (lambda (x) ... ))
(boo (lambda (x y) ... )))

... ))

All have the same lexical environment, which provides values for the bound variables a and b.

12 Lexical Addressing (§93–93)

93.

13 The Tail Call Optimization (§94–106)

94. Imagine you are using your web browser to read some web page, and that this page contains hyperlinks
to other pages, as in Figure 2. As you are reading the page you would like to branch off and read
the pages that are referenced by these hyperlinks. You do not want simply to transfer to other pages,
but rather to have them open in new windows or tabs, so that you could read them, possibly open
additional pages from within those pages, and when you read the end of a page, close its window or
tab, and continue reading. Now suppose the last link on the page just so happens to be the last thing
on the page. There is nothing to read further down. In this case, it would be inefficient to open a new
window or tab, and upon closing it, to close the parent page as well. We can simply re-use the current
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Figure 2: Hyperlinked Documents

window or tab by clicking on the link in such a way that the new page opens in the same window or
tab as the current one. This would be the case when clicking on the last link of Page A (boxed in
green). Welcome to the tail-call optimization.

95. A tail call is the last procedure call to be evaluated in a given frame. Ordinarily, procedure calls, or
applications, set up an activation frame on the stack. The activation frame contains the values of the
arguments passed on to the procedure, as well as a pointer to the lexical environment at the time the
closure was created. The activation frame may also contain other information, such as the number of
arguments that were passed to the procedure, local variables, etc. A tail call is a procedure call that
happens just before a return from the current call and the deallocation of the current activation frame.
The tail-call optimization re-uses the current activation frame, modifying it as necessary, in order to
avoid setting up a new activation frame on the stack.

96. A tail-recursive call is a recursive call that is in tail position.

97. A recursive procedure in which every recursive call is in tail position is compiled, by a compiler that
optimizes tail calls, into a loop.

98. Conversely, all looping constructs can be written as recursive functions in which every recursive call is
in tail position.

99. Example: : Here is an implementation of a while-loop in Scheme:

(define while
(lambda (test expr)
(if (test)
(begin
(expr)

12



(while test expr)))))

Notice that the recursive call to while is indeed in tail position. Here is some imperative code in C:

for (int i = 1; i < 5; ++i) {
printf("Hello #%d\n");

}

The above code prints

Hello #1
Hello #2
Hello #3
Hello #4

Here is how the above code could be written using the above while procedure in Scheme:

(let ((i 1))
(while (lambda () (< i 5))
(lambda ()
(display (format "Hello #~a~%" i))
(set! i (+ i 1)))))

As you can see, the code is very similar (and not very Scheme-like!).

100. Exercise: Implement your own for -loop in Scheme, using a tail-recursive procedure. There are many
ways of implementing for -loops; Think up some nice API, and implement it.

101. Exercise: Because Scheme is a quasi-functional programming language, procedures that do not return
meaningful and useful values are not very interesting. Design and implement a for -loop in Scheme,
using a tail-recursive procedure, in which the value of the body of the loop is used to construct a list.
Think abot the kind of API that would be useful for such a loop.

102. Example: : The recursive call in this procedure is not in tail position:

fun length [] = 0
| length (a :: s) = 1 + length s;

As you can see, after the recursive calls to length, the procedure adds 1 to the return value of the
recursive call, so the call is not the last thing that happens.

103. Exercise: Rewrite the procedure length so that the recursive call is in tail position.

104. It is possible to construct recursive procedures in which only some of the recursive calls are in tail
position. Here is our choice:

fun ackermann (0, b) = b + 1
| ackermann (a, 0) = ackermann (a - 1, 1)
| ackermann (a, b) =
ackermann (a - 1, ackermann (a, b - 1))

105. Exercise: Underline in the above code for Ackermann’s function the one recursive call that is not in
tail position.

106.
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14 Annotating Tail Calls (§107–107)

107.
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