(x apl-2013-06-24c.v

*

* Programmer: Mayer Goldberg, 2013
*)

Require Import Arith.

Theorem our_plus_0-1: ¥ a, 0 + a = a.
Proof.

intro a.

unfold plus; fold plus; reflexivity.
Qed.

Theorem our_plus-0-r: ¥ a, a + 0 = a.
Proof.
induction a.

reflexivity.

unfold plus; fold plus.
rewrite [Ha; reflexivity.
Qed.

Lemma L1:Vab Sa+b=2S5 (a+0b).
Proof.

fold plus; unfold plus; reflexivity.
Qed.

Lemma L2: V a b,a+ Sb=5 (a+b).
Proof.

induction a.

induction b.

reflexivity.

repeat rewrite our_plus_0_l; reflexivity.
induction b.

rewrite our_plus_0_r; rewrite LI.

rewrite [Ha; rewrite our_plus_0_r; reflexivity.

rewrite L1; rewrite [Ha; rewrite LI1; reflexivity.
Qed.

Theorem our_plus_comm: ¥ a b, a + b = b + a.
Proof.

induction a.

intro b.

rewrite our_plus_0_l, our_plus_0_r; reflexivity.

induction b.



rewrite our_plus_0_l; rewrite our_plus_0_r; reflexivity.
repeat rewrite LI.
repeat rewrite L2.
rewrite [Ha.
reflexivity.
Qed.

Theorem our_mult_0_1l: ¥ a, 0 x a = 0.
Proof.

intro a.

unfold mult; reflexivity.
Qed.

Theorem our_mult_0_r: ¥V a, a x 0 = 0.
Proof.

induction a.

unfold mult; reflexivity.

unfold mult; fold mult.

rewrite our_plus_0_1

exact [Ha.
Qed.

Theorem our_mult_1_1: ¥V a, 1 X a = a.
Proof.

intro a.

unfold mult.

rewrite our_plus_0_r; reflexivity.
Qed.

Theorem our_mult_1_r: ¥ a, a X 1 = a.
Proof.
induction a.
rewrite our_mult_0_1; reflexivity.
unfold mult; fold mult.
unfold plus.
rewrite [Ha.
reflexivity.
Qed.

Theorem our_plus_assoc: ¥ a b ¢, a + (b + ¢) = a + b + c
Proof.
induction a, b, c.

reflexivity.
repeat rewrite our_plus_0_l; reflexivity.

repeat rewrite our_plus_0_l; repeat rewrite our_plus_0_r; reflexivity.



repeat rewrite our_plus_0_l; reflexivity.
repeat rewrite our_plus_0_r; reflexivity.
rewrite our_plus_0_l, our_plus_0_r; reflexivity.
repeat rewrite our_plus_0_r; reflexivity.

repeat rewrite LI; repeat rewrite L2; rewrite L1; rewrite [Ha; reflexivity.
Qed.

Lemma L3: VYV ab Saxb=>0+axb
Proof.

intros a b.

unfold mult; fold mult; reflexivity.
Qed.

Lemma L4: Y ab axSb=a-+ axb
Proof.
induction a.
intro b.
repeat rewrite our_mult_0_l.
rewrite our_plus_0_l; reflexivity.

induction b.

rewrite our_mult_1_r, our_mult_0_r, our_plus_0_r; reflexivity.
repeat rewrite LS.

repeat rewrite [Ha.

repeat rewrite our_plus_assoc.

replace (S (S b) + a) with (S a + S b).

reflexivity.

repeat rewrite LI.

rewrite L2, our_plus_comm; reflexivity.
Qed.

Theorem our_mult_comm: ¥ a b, a X b = b X a.
Proof.

induction a.

intro b.

rewrite our—mult_0_I, our_mult_0_r; reflexivity.

induction b.
rewrite our_mult_0_I, our_mult_0_r; reflexivity.

repeat rewrite LS&.
repeat rewrite L4.

repeat rewrite our_plus_assoc.
rewrite < [Ha.
repeat rewrite LI.



replace (b + a) with (a + b).
reflexivity.
apply our_plus_comm.

Qed.

Theorem our_mult_plus_distr_r: ¥ a b ¢, (a +b) X c=a x ¢ + b X ¢
Proof.
induction a, b, c.
repeat rewrite our_mult_0_r; reflexivity.
repeat rewrite our_mult_0_l; reflexivity.
repeat rewrite our_mult_0_r; reflexivity.
repeat rewrite our—-mult_0_l; repeat rewrite our_plus_0-l; reflexivity.
repeat rewrite our_mult_0_r; reflexivity.
rewrite our_plus_0_r, our_mult_0_l, our_plus_0_r; reflexivity.
repeat rewrite our_-mult_0_r; reflexivity.
rewrite L1.
rewrite L2.
repeat rewrite LS.
repeat rewrite Lj.
rewrite [Ha.
repeat rewrite our_plus_assoc.
repeat rewrite LI.
repeat rewrite L2.
repeat rewrite L1.
rewrite (our_plus_comm (¢ + a + a X ¢) ¢).
repeat rewrite our_plus_assoc.
replace ((¢ + ¢+ a) + b+ (a x ¢)) with ((¢ + ¢ + a) + (a X ¢) + b).
reflexivity.
repeat rewrite < our_plus_assoc.
rewrite (our_plus_comm (a X ¢) b).
reflexivity.
Qed.

Theorem our_mult_plus_distr_l: ¥ a b ¢, a X (b + ¢) =a X b+ a X c.
Proof.

intros a b c.

rewrite our_mult_comm.

rewrite our_mult_plus_distr_r.

rewrite our_mult_comm at 1.

rewrite (our_mult_comm c a).

reflexivity.
Qed.

Lemma acPbc: Y abc,a=b—>a+c=0+ c
Proof.



intros a b ¢ H.
rewrite H; reflexivity.
Qed.

Theorem our_mult_assoc: ¥ a b ¢, a X (b X ¢) =a X b X ¢
Proof.
induction a, b, c.

repeat rewrite our—-mult_0_r; reflexivity.

repeat rewrite our—-mult_0-1, our_mult_0_r; reflexivity.

repeat rewrite our_mult_0_l, our_mult_0_r; reflexivity.

repeat rewrite our_-mult_0_l; reflexivity.

repeat rewrite our_mult_0_r; reflexivity.

rewrite our_mult_0_l, our—mult_0_r; reflexivity.

repeat rewrite our—-mult_0_r; reflexivity.

repeat rewrite L3, L4.

repeat rewrite our_plus_assoc.

repeat rewrite our_mult_plus_distr_r.

repeat rewrite our_mult_plus_distr_I.

repeat rewrite our_plus_assoc.

rewrite [Ha.

rewrite (acPbc (Sb+c+bxc+axSb+axc)(Sb+a+axb+Sbxc+
a X c)(axbxc).

reflexivity.

rewrite (acPbc (Sb+c+bxc+axSb)(Sb+a+axb+Sbxc)(axc)).

reflexivity.

rewrite L3.

rewrite L4.

repeat rewrite < our_plus_assoc.

repeat rewrite (our_plus_comm (S b) -).

rewrite (acPbc (¢ + (b x ¢+ (a+a x b)) (a+ (a x b+ (¢c+bxc)))(SDh)).

reflexivity.

rewrite (our_plus_comm (b X ¢) (a + a x b)).

repeat rewrite our_plus_assoc.

rewrite (acPbc (¢ +a+ a xb)(a+ ax b+ c)(bxc)).

reflexivity.

rewrite < (our_plus_assoc a (a X b) c).

rewrite (our_plus_comm (a X b) c).

rewrite our_plus_assoc.

rewrite (our_plus_comm a c).

reflexivity.
Qed.



