
(* apl-2013-06-24c.v
*
* Programmer: Mayer Goldberg, 2013
*)

Require Import Arith.

Theorem our plus 0 l : ∀ a, 0 + a = a.
Proof.
intro a.
unfold plus ; fold plus ; reflexivity.

Qed.

Theorem our plus 0 r : ∀ a, a + 0 = a.
Proof.
induction a.

reflexivity.

unfold plus ; fold plus.
rewrite IHa; reflexivity.

Qed.

Lemma L1 : ∀ a b, S a + b = S (a + b).
Proof.
fold plus ; unfold plus ; reflexivity.

Qed.

Lemma L2 : ∀ a b, a + S b = S (a + b).
Proof.
induction a.
induction b.
reflexivity.

repeat rewrite our plus 0 l ; reflexivity.

induction b.

rewrite our plus 0 r ; rewrite L1.

rewrite IHa; rewrite our plus 0 r ; reflexivity.

rewrite L1 ; rewrite IHa; rewrite L1 ; reflexivity.
Qed.

Theorem our plus comm: ∀ a b, a + b = b + a.
Proof.
induction a.
intro b.
rewrite our plus 0 l, our plus 0 r ; reflexivity.

induction b.

1



rewrite our plus 0 l ; rewrite our plus 0 r ; reflexivity.
repeat rewrite L1.
repeat rewrite L2.
rewrite IHa.
reflexivity.

Qed.

Theorem our mult 0 l : ∀ a, 0 × a = 0.
Proof.
intro a.
unfold mult ; reflexivity.

Qed.

Theorem our mult 0 r : ∀ a, a × 0 = 0.
Proof.
induction a.
unfold mult ; reflexivity.
unfold mult ; fold mult.
rewrite our plus 0 l.
exact IHa.

Qed.

Theorem our mult 1 l : ∀ a, 1 × a = a.
Proof.
intro a.
unfold mult.
rewrite our plus 0 r ; reflexivity.

Qed.

Theorem our mult 1 r : ∀ a, a × 1 = a.
Proof.
induction a.
rewrite our mult 0 l ; reflexivity.
unfold mult ; fold mult.
unfold plus.
rewrite IHa.
reflexivity.

Qed.

Theorem our plus assoc: ∀ a b c, a + (b + c) = a + b + c.
Proof.
induction a, b, c.

reflexivity.

repeat rewrite our plus 0 l ; reflexivity.

repeat rewrite our plus 0 l ; repeat rewrite our plus 0 r ; reflexivity.

2



repeat rewrite our plus 0 l ; reflexivity.
repeat rewrite our plus 0 r ; reflexivity.
rewrite our plus 0 l, our plus 0 r ; reflexivity.
repeat rewrite our plus 0 r ; reflexivity.
repeat rewrite L1 ; repeat rewrite L2 ; rewrite L1 ; rewrite IHa; reflexivity.

Qed.
Lemma L3 : ∀ a b, S a × b = b + a × b.
Proof.
intros a b.
unfold mult ; fold mult ; reflexivity.

Qed.
Lemma L4 : ∀ a b, a × S b = a + a × b.
Proof.
induction a.
intro b.
repeat rewrite our mult 0 l.
rewrite our plus 0 l ; reflexivity.
induction b.
rewrite our mult 1 r, our mult 0 r, our plus 0 r ; reflexivity.
repeat rewrite L3.
repeat rewrite IHa.
repeat rewrite our plus assoc.
replace (S (S b) + a) with (S a + S b).
reflexivity.
repeat rewrite L1.
rewrite L2, our plus comm; reflexivity.

Qed.
Theorem our mult comm: ∀ a b, a × b = b × a.
Proof.
induction a.
intro b.
rewrite our mult 0 l, our mult 0 r ; reflexivity.
induction b.
rewrite our mult 0 l, our mult 0 r ; reflexivity.
repeat rewrite L3.
repeat rewrite L4.
repeat rewrite our plus assoc.
rewrite ← IHa.
repeat rewrite L1.

3



replace (b + a) with (a + b).
reflexivity.
apply our plus comm.

Qed.

Theorem our mult plus distr r : ∀ a b c, (a + b) × c = a × c + b × c.
Proof.
induction a, b, c.
repeat rewrite our mult 0 r ; reflexivity.
repeat rewrite our mult 0 l ; reflexivity.
repeat rewrite our mult 0 r ; reflexivity.
repeat rewrite our mult 0 l ; repeat rewrite our plus 0 l ; reflexivity.
repeat rewrite our mult 0 r ; reflexivity.
rewrite our plus 0 r, our mult 0 l, our plus 0 r ; reflexivity.
repeat rewrite our mult 0 r ; reflexivity.
rewrite L1.
rewrite L2.
repeat rewrite L3.
repeat rewrite L4.
rewrite IHa.
repeat rewrite our plus assoc.
repeat rewrite L1.
repeat rewrite L2.
repeat rewrite L1.
rewrite (our plus comm (c + a + a × c) c).
repeat rewrite our plus assoc.
replace ((c + c + a) + b + (a × c)) with ((c + c + a) + (a × c) + b).
reflexivity.
repeat rewrite ← our plus assoc.
rewrite (our plus comm (a × c) b).
reflexivity.

Qed.

Theorem our mult plus distr l : ∀ a b c, a × (b + c) = a × b + a × c.
Proof.
intros a b c.
rewrite our mult comm.
rewrite our mult plus distr r.
rewrite our mult comm at 1.
rewrite (our mult comm c a).
reflexivity.

Qed.

Lemma acPbc: ∀ a b c, a = b → a + c = b + c.
Proof.

4



intros a b c H.
rewrite H ; reflexivity.

Qed.

Theorem our mult assoc: ∀ a b c, a × (b × c) = a × b × c.
Proof.
induction a, b, c.

repeat rewrite our mult 0 r ; reflexivity.
repeat rewrite our mult 0 l, our mult 0 r ; reflexivity.
repeat rewrite our mult 0 l, our mult 0 r ; reflexivity.
repeat rewrite our mult 0 l ; reflexivity.
repeat rewrite our mult 0 r ; reflexivity.
rewrite our mult 0 l, our mult 0 r ; reflexivity.
repeat rewrite our mult 0 r ; reflexivity.
repeat rewrite L3, L4.
repeat rewrite our plus assoc.
repeat rewrite our mult plus distr r.
repeat rewrite our mult plus distr l.
repeat rewrite our plus assoc.
rewrite IHa.
rewrite (acPbc (S b + c + b × c + a × S b + a × c) (S b + a + a × b + S b × c +

a × c) (a × b × c)).
reflexivity.
rewrite (acPbc (S b + c + b × c + a × S b) (S b + a + a × b + S b × c) (a × c)).
reflexivity.
rewrite L3.
rewrite L4.
repeat rewrite ← our plus assoc.
repeat rewrite (our plus comm (S b) ).
rewrite (acPbc (c + (b × c + (a + a × b))) (a + (a × b + (c + b × c))) (S b)).
reflexivity.
rewrite (our plus comm (b × c) (a + a × b)).
repeat rewrite our plus assoc.
rewrite (acPbc (c + a + a × b) (a + a × b + c) (b × c)).
reflexivity.
rewrite ← (our plus assoc a (a × b) c).
rewrite (our plus comm (a × b) c).
rewrite our plus assoc.
rewrite (our plus comm a c).
reflexivity.

Qed.

5


